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ABSTRACT

The optimal design of structural systems represents a pivotal challenge, striking a balance
between economic efficiency and safety. There has been a great challenge in balancing
between the economic issues and safety factors of the structures over the past few decades;
however, development of high-speed computing systems enables the experts to deal with
higher computational efforts in designing structural systems. Recent advancements in
computational methods have significantly improved our ability to address this challenge
through sophisticated design schemes. The main purpose of this paper is to develop an
intelligent design scheme for truss structures in which an optimization process is
implemented into this scheme to help the process reach lower weights for the structures. For
this purpose, the Artificial Rabbits Optimization (ARO) algorithm is utilized as one of the
recently developed metaheuristic algorithms which mimics the foraging behaviour of the
rabbits in nature. In order to reach better solutions, the improved version of this algorithm is
proposed as I-ARO in which the well-known random initialization process is substituted by
the Diagonal Linear Uniform (DLU) initialization procedure. For numerical investigations, 5
truss structures 10, 25, 52, 72, and 160 elements are considered in which stress and
displacement constraints are determined by considering discrete design variables. By
conducting 50 optimization runs for each truss structure, it can be concluded that the I-ARO
algorithm is capable of reaching better solutions than the standard ARO algorithm which
demonstrates the effects of DLU in enhancing this algorithm’s search behaviour.
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1. INTRODUCTION

The design process of structural systems deals with the purpose of providing an economic
design scheme with a proper levels of load bearing capacity which is resistant against
applied forces on the structure. The design of a structure is to achieve the goals of safety,
desired performance and reliability while all design methods have been compiled by valid
regulations. As one of the most important aspects of structural design, safety refers to the
resistance of the structure in dealing with the effects of loads while desired performance
concerns the comfort of the residence so that there should not be excessive cracking and
deformation in the structural members. Finally, the reliability of the structure refers to the
fact that the materials of the structure should maintain their quality throughout the expected
lifetime, so that the safety and operability of the structure does not decrease too much due to
aging, corrosion and other damaging factors. Among these factors, other issues like
economic concern can also be of great importance while the desired performance of the an
structure can be guaranteed by considering many design patterns that can be used for final
construction so that finding the more economic design that satisfies the requirements of the
project is one of the challenging factors in recent years. In other words, optimum design
process is the way of reaching from a technological design procedure to an intelligent
engineering design process by conducting multiple analysis and design procedures | order to
reach a proper design scheme.

Based on the Gomez, et al. definition [1], the optimization is the process of “doing the
most with the least” while the other experts like Lockhart and Johnson [2] described this
process as an operation for reaching “the most favorable or effective value or condition”. In
general, reaching the “best” design by taking into account some predefined specifications
and criteria is the main aim of optimization. Many efforts have been conducted in optimum
design of engineering problems with different sorts of optimization algorithms including the
metaheuristics [3, 4]. Metaheuristic optimization algorithms are some types of intelligent
approaches that can be used for leading search procedures in order to reach a most possible
optimal solution which is partially near the exact global optimum point. Based on the fact
that optimum design of structural engineering has received great attention due to the
development of search techies like metaheuristics [5, 6], the applicability of these methods
in dealing with truss optimization process is considered in this paper. By referring to the
recent literature in this field, Stolpe [7] conducted a literature review on different methods of
optimization applied for optimum design of truss structures by considering discrete design
variables. Jiang et al. [8] proposed an improved version of the well-known whale algorithm
for optimum design of truss structures. Tang and Lee [9] utilized the chaos theory to
enhance he search capability of the teaching-based evolutionary algorithms for optimum
design of truss structures discrete variables. Astudillo et al. [10] conducted a research on size
optimization of truss bridges by measn of an enhanced firefly algorithm. Altay et al. [11]
proposed the upgraded version of the salp swarm algorithm for optimum design of planar
truss structures. Goodarzimehr et al. [12] utilized the Bonobo optimizer for optimization of
truss structures with static constraints. Mejias et al. [13] conducted a simultaneous topology
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optimization process by means of continuous and discrete design variables for
multiresolution problems. Mashru et al. [14] investigated multi objective optimization of
truss structures by proposing the multi objective version of thermal exchange algorithm.
Shahrouzi and Salehi [15] proposed a new adaptive strategy for discrete optimization of
space truss problems by focusing on accelerating the search process. Sellami [16] utilized
the multi-stage descent algorithm for optimization of large scale truss structures in which
both continuous and discrete design variables were used. Sheng-Xue [17] investigated the
applicability of the medalist learning algorithm in optimum design of truss problems with
frequency constraints. Khodadadi et al. [18] developed a comparative investigation to
control the capability of 8 different metaheuristic algorithms for design optimization of truss
problems with different sorts of static constraints. Kale et al. [19] used cohort intelligence
for developing a constrained truss optimization procedure to reach economic truss designs.
Chen et al. [20] investigated the structural design optimization by using a new model based
on truss-continuum methodology in order to reduce the overall weight of the structures.

Recent advancements in optimization algorithms have significantly impacted the field of
engineering design, offering novel and efficient solutions for various complex problems.
Ranjbarzadeh et al. [21] and Seyedzadeh et al. [22] both emphasize the effectiveness of
multi-objective metaheuristics in optimizing truss structures and wind farm layouts,
underscoring the versatility of these approaches across different engineering challenges. In
the automotive and electric vehicle sectors, Saba et al. [23] and Amini et al. [24]
demonstrate the use of lattice structures and hybrid algorithms for the optimum design of
components, highlighting the industry's shift towards more sustainable and efficient
manufacturing methods. The introduction of chaos theory into optimization algorithms by Li
and Zhang [25] and Heidari et al. [26] has opened new avenues for solving real-world
engineering problems, showcasing the potential for innovative algorithmic strategies to
enhance problem-solving capabilities. Moreover, the development and application of nature-
inspired algorithms, as seen in the work of Shariat Panahi et al. [27], Gharibzadeh et al. [28],
and Asadian et al. [29] for optimizing heat exchangers and engineering designs, reflect a
growing trend towards leveraging biological processes and behaviors to inform algorithmic
logic. Wang and Zhang's [30] exploration of the cheetah optimization algorithm further
illustrates the ongoing exploration and application of animal-inspired algorithms in
engineering optimization, particularly in the design of heat exchangers. These studies
collectively indicate a robust and diverse trajectory of research within engineering
optimization, showcasing the integration of multi-disciplinary approaches to address
complex engineering challenges effectively.

The main purpose of this paper is to utilize one of the recently developed metaheuristics
algorithm for optimum design of truss structures while a new variant of this method is also
proposed in order to enhance the overall capability of the standard approach. For this
purpose, the Artificial Rabbits Optimization (ARO) algorithm [31] is utilized as one of the
recently developed metaheuristic algorithms which mimics the foraging behaviour of the
rabbits in nature. In order to reach better solutions, the improved version of this algorithm is
proposed as I-ARO in which the well-known random initialization process is substituted by
the Diagonal Linear Uniform (DLU) [32] initialization procedure. For numerical
investigations, 5 truss structures 10, 25, 52, 72, and 160 elements are considered in which
stress and displacement constraints are determined by considering discrete design variables.
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By conducting 50 optimization runs for each truss structure, the comparative statistical
results are calculated and the performance of the ARO and I-ARO are compared to the most
competitive results of other metaheuristics from the literature.

This paper introduces a significant advancement in the field of structural engineering
optimization through the development and application of the I-ARO algorithm,
incorporating a novel approach by substituting the traditional random initialization methods
with the DLU initialization procedure for the first time. This innovative integration is
specifically applied to the optimization of truss structures, encompassing a diverse range
from 10 to 160 elements, with the aim of achieving the lowest possible weight while
adhering to stress and displacement constraints. The research highlights the I-ARO
algorithm's superior performance over existing methodologies in optimizing truss structures,
demonstrated through impressive statistical outcomes across various configurations. The
paper's novelty lies in this unique application of the DLU initialization in conjunction with
the I-ARO algorithm, showcasing its potential to redefine optimization practices in structural
engineering and beyond, hinting at future applications in diverse engineering challenges.

2. PROBLEM STATEMENT OF DISCRETE TRUSS OPTIMIZATION

The main focus of this section is on formulating a structural design optimization problem
aimed at minimizing the weight of truss structures by considering specific design
constraints. The main objective is to reduce the overall weight of the truss structures by
using discrete design variables that assign predefined design sections to the structural
elements during the optimization process. The mathematical representation of these aspects
is as follows while the predefined set of discrete cross-sectional areas is denoted by S

e
Weight (A) = z p; L A;. i=12....e, 1)
i=1
AeS={A,.4,... A} 2

where the vector A contains the cross-sectional area of the design sections (4;); p;
represents the density of the steel material; I; denotes the length of the structural elements; e
is the total number of structural elements in the structure.

The design constraints are formulated by considering the nodal displacement of the truss
structures and the stress in structural elements as follows:

Smin < 6; < Spmax- j=12....n (3)

Omin < 0; < Opmax- i=12....e 4)

where §; and o; represent the nodal displacement in jth node and elemental stress in ith
element; n is the total number of structural nodes; 6,,;, and o,,;, are the lower bound of the
constraints; &,,,, and a,,4, are the upper bound of the constraints; n is the total number of
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structural nodes in the structure.

Since the truss optimization problem has a set of constraints to be taken care of, a proper
constraint handling approach is formulated as follows which is a type of penalty handling
approach:

fpenalty(A) = (1 + & U) 2 X Weigth (A) (5)
h
v = max(0.g:(4)) (6)

where v represents the summation of the violated design constraints; h is the total
number of design constraints; g;(A) represents the ith design constraint; &; and ¢, are used
to control the penalty applied to the constraints.

3. ARTIFICIAL RABBITS OPTIMIZATION (ARO) ALGORITHM

In this section, the overall description of the ARO algorithm is presented by focusing on
inspirational concept and the mathematical model of the algorithm.

The ARO was inspired by the survival strategies of rabbits in their natural habitat. These
strategies have evolved over time as a means of ensuring the rabbits' survival and avoiding
predators. One such strategy involves the rabbits' behavior of not eating the grass near their
nests to prevent detection by predators. Instead, they venture further away to find food,
utilizing their wide field of vision for overhead scanning. Another survival strategy
employed by rabbits is random hiding. To escape predators or hunters, rabbits create
multiple burrows around their nest and randomly choose one as a shelter (Fig. 1). Their
physical attributes, such as short forelegs and long back legs, along with strong muscles and
tendons, enable them to run at high speeds [31]. This strategy is utilized in the main search
loop of the ARO algorithm as exploitation phase while the former strategy is considered in
the exploration phase.

T

‘@
oy N o

Figure 1. A Rabbit with multiple nests in nature [31]

In the first stage of the ARO algorithm, a random initialization process is conducted as
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follows in order to determine the initial position of the search agents:

- 1 [ 41 2 J a’
xl xl x1 e X e x1
x2 x% x22 e xj e xg
N I - : P i Ll =12, ..,n
= . , -
xi xil xlz cee xlj cee x{i - 1,2,...,d. (7)
'le e —xT]i x% cee x{l cee x_g_
' ' ‘ j i=12..,n
J _ ] ] _ ] )&y )
Xi = Ximin +rand. (xi,max xi,min)' {I =12, ..,d. (8)

where x; is position vector of the ith rabbit; n and d refer to the rabbits’ total population

and dimension of the optimization problem respectively; xi’:max and x{min relates to the

upper and lower bounds of the optimization variables; rand denotes to a random number in
the range of O and 1.

The main loop of the ARO algorithm is developed based on the previously mentioned
two surviving strategies of rabbits in nature including the detour foraging which is utilized
for exploration phase of the algorithm and random hiding behaviour for exploitation phase.
For this purpose, each rabbit in the swarm is assigned its own region containing some grass
and several burrows. During foraging, rabbits visit the positions of other rabbits in the
swarm randomly. They tend to move around a food source, adding a perturbation to their
movement to ensure they gather enough food. The mathematical representation of this
detour foraging behaviour in ARO involves each search individual updating its position
towards another randomly chosen search individual within the swarm, while incorporating a
perturbation to their movement. The mathematical model of this phase in the ARO algorithm
is developed as follows:

vi(t+1) =x;(t) +R. (xl-(t) — xj(t)) + round(0.5. (0.05 + 11)).ny,

i=12,..,n ©)
R=1L.c (10)
L= <e - e(t;_1)2>.sin (2mry) (11)
L k=90 k=1,...d (12)
(k) = =L,
¢ 0 olse I=1,...,[rs-d]

g = randperm(d) (13)
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ni~ N(O, 1) (14)

where v(t + 1) denotes new position of the ith rabbit; T is the total number of
optimization iterations; x;(t) and x;(t) denote the ith and jth rabbits’ position at current
iteration; randperm generates integer random numbers between 1 and d; r1, r2, and r3
refers to random numbers of range 0 and 1.

In Fig. 2, the variation of the running length in rabbits (L) is depicted, which indicates the
distance covered during detour foraging while in Fig. 3, the variation of R as running
operator is illustrated which follows a standard normal distribution.

Values of L

0 200 400 600 800 1000
Iterations

Figure 2. Changing in the L values during time [31]

2-D steps 3-D steps

-10 -5 0 5

Figure 3. Changing in the R values during time [31]

For evading the predators in the exploitation phase, burrows creation process is
conducted which is modeled by generating d new vectors around the current position of the
rabbits. The rabbits selects one of these burrows randomly to reduce the predation risk. The
equation provided below describes the generation of the jth burrow for the ith rabbit:

i=1.2,..,n
by® =x@+Hox®, [ Z7577 (15)
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T—t+1

H = T 1 (16)
n2~N(0,1) 17)
1 if k==j
g(k) = k=1,...,d (18)
0 else

where H refers to a parameter which denotes on hiding with a linear decrease from 1%
iteration to Tth iteration.

Based on the earlier description of rabbits’ behavior in nature, they often encounter the
danger of predators chasing and attacking them. To ensure their survival, they need to find a
safe hiding spot so, they tend to select one of their accessible burrows randomly to seek
refuge and avoid being captured. To express this random hiding behavior in mathematical
terms, the following equations are used:

v (t + 1) = x;(t) + R. (14. by (£) — x; (D)), i=12,..,n (19)
b (® = 0@+ Hgox @, 215 0)
1 if k==|7r-4|
g(k) = k=1,...,d (21)
0 else

where b; .- is the burrow which is selected randomly for hiding; 72 and 75 are randomly
generated numbers in the range of (0,1).

The position updating process of rabbits after conducting the procedures for both
exploration and exploitation phases are handled as follows:

x;(t) fla@®) < f(vi(t+ 1)) (22)
vi(t+1) fai(©) > f(vi(t+ 1))
In the ARO algorithm, a switch between two phases of exploration and exploitation is

modeled as energy shrink (Fig. 4) in which a smooth transit is conducted by means of the
following equation:

xi(t+1)={

AM®)=4(1-tT)In/r (23)

where r is a randomly generated number in the range of 0 and 1; t is the current iteration
and T is the maximum number of considered iterations.
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Figure 4. Energy shrink action during search process [31].

363

In Alg. 1 and Fig. 5, the pseudo code and the flowchart of the ARO are presented

respectively.

Algorithm 1: The pseudo code of the ARO algorithm [33].

1: Initialize the parameters of ARO: n, m,and T
: Initialization of ARQO's population
Xi,j =Xjmin + (Xjmax — xjmin) x U(0,1) Vi=1,2,....n,and Vj=1,2,....m
: Calculate f(xi) Vi = 1,2,...,n {Fitness evaluation}
: Select the best solution so far xbest
t=1
: while (t<T) do
:fori=1:ndo
: Calculate the energy factor A using
(if A>1then
10: Select a random rabbit xk, where k # i
11: Calculate R using
12: Perform detour foraging using
13: else
14: Generate d burrows and randomly select one
15:  Perform random hiding action using
16: end if
17: Calculate fitness of xi
18: Update position of xi
19: Update the xbest
20: end for
2L:t=t+1
22: end while
23: Return the best solution xbest

N

©O~NU D W
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| Initialize rabbits’ position and control parameters.

| Calculate the energy factor A I:
]

Yes _|Randomly choose a rabbit from all individuals and
perform detour foraging strategy by Eq. (2).

No Generate d burrows and randomly pick one as
hiding, and perform random hiding by Eq. (12).

v
Calculate the fitness and
update the position.
v

| Update the best solution found so far

Is the stop
criterion met?

| Output the best solution |

End

Figure 5. Flowchart of ARO algorithm [34]

4. IMPROVED ARO (I-ARO) ALGORITHM

Random number generation has been one of the most frequent ways of creating new solution
candidates in most of the metaheuristic algorithms. Random movements involve a series of
consecutive random steps for various purposes. The initial position determination alongside
the movements of candidates in the main loop of the algorithms can be done by using
randomization process based on the concept of Brownian random motion. However, this
procedure leads to poor convergence behavior by the algorithms and the possibility of
entrapment in local optimal points is increased in this method. In the ARO algorithm, the
Brownian random generation is utilized in different phases on the algorithm especially in the
initialization part in which positon vectors are determined randomly by considering the
upper and lower bounds of the variables. The initialization process has a great impact on the
optimization procedure and the quality of the final global optimal points while the random
initialization process concerns the diversity and uniformity of population distribution
without taking into account the update mechanism of the algorithm. In this regard, there is
an urgent need to develop novel techniques for enhancing the initialization process of the
algorithms which can increase the searching capability of the algorithms. For this purpose,
the Improved ARO (I-ARO) is proposed in this section in which the Brownian random
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initialization process of the ARO is replaced by the a new initialization scheme called
Diagonal Linear Uniform (DLU) initialization process [32].

In the DLU initialization process, the dimension of the search space are divided into
equal parts of N-1 in the first phase while the vertices of the diagonal subspace are selected
accordingly. In other words, some uniform points on the "diagonal™ of the space are selected
(Fig. 6.a) while the total distance between adjacent points is (xu-xI)/(N-1). For instance, if
five initial individuals are required in a 3-dimensional space by considering the upper and
lower bound vectors of (-2,-2,-2) and (2,2,2) respectively, each dimension is divided into
four parts by the DLU initialization process hile the DLU method selects the five initial
points as (2,2,2), (-2,-2,-2), (1,1,1), (0,0,0) and (-1,-1,-1) (Fig. 6.b). The initialization by
means of DLU is a straightforward and readily applicable method. What's crucial is that its
effectiveness remains consistent even when dealing with higher dimensions, and it shows
strong performance across diverse problem categories, encompassing multi-objective and
multimodal problems. The pseudocode for DLU initialization process is presented in Fig. 7.

d *

x

*

*

Dimension 2

w

*
JTT7

[

N
N
™~
N

AN

|
/
g
o 0 \ /

Dimension 1

RYAVATA

0

]
]
]
<

YAV

(a) (b)
Figure 6. The diagrams of DLU initialization process for 2D (a) and 3D (b) spaces [32]

Input: the range [xi_min, xi_max] for each dimension xi, the population size N, the dimension of
problem D.
X_init = zeros(N, D) // allocate memory space
forj=1,2,..,Ndo
fori=2,..,D-1do
dx = (xi_max - xi_min) / (N - 1) // length of each interval in i-th dimension
X_init(j, 1) = xi_min
X_init(j, i) = xi_min + (i - 1) * dx
X_init(j, D) = xi_max
end for
end for
return X_init as a vector.

Figure 7. Pseudo code of the DLU approach [32]
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5. TRUSS DESIGN EXAMPLES WITH DISCRETE VARIABLES

In this section, the details of the considered truss design examples with discrete design
variables are described while the basic characteristics of the utilized material alongside the
truss structures’ specific details are explained. The first design example is a truss structure
with 10 structural members and 6 nodes (Fig. 8). The density of the steel material is set to
0.1 Ib/in® and the modulus of elasticity is 10* ksi. The displacement and stress constraints are
as £2 in. and £25 ksi respectively while the discrete design variables are presented in Table
1.

The second design example is a truss structure with 10 nodes and 25 structural members
(Fig. 9). The modulus of elasticity is 10* ksi and the density of the steel material is set to 0.1
Ib/in®. The displacement and stress constraints are as +0.35 in. and +40 ksi respectively
while the discrete design variables are presented in Table 1.

The 52-bar truss structure is the third design example in this paper which is comprised of
20 node and 52 structural members (Fig. 10). The only constraint in this structure is stress
limitations with allowable range of £180 Mpa while the modulus of elasticity and the
density of the material are set to 207 GPa and 7860 kg/m? respectively. The discrete design
variables are presented in Table 1.

The 72-bar truss structure is the forth design example which is comprised of 20 node and
72 structural members (Fig. 11). The only constraint in this structure is stress limitations
with allowable range of +25 Mpa while the modulus of elasticity and the density of the
material are set to 10* ksi and 0.1 Ib/in® respectively. The discrete design variables are
presented in Table 1.

The last design example is a 160-bar truss structure with 52 nodes and 160 structural
elements (Fig. 12). The buckling stress limitations of o, = 1300 — (kl/r)?/24 for kl/r <
120 and g, = 107 /(kl/7)? for kl/r > 120 are considered in design process. The modulus
of elasticity and density of material are 2.047x106 kg/cm? and 0.00785 kg/cm? respectively.
The discrete design variables are presented in Table 1.

Table 1: The discrete design variables of the truss design examples.

Truss ; ; in2

Structure Discrete Variables (in?)

10-bar {1.62,1.80,1.99,2.13,2.38,2.62,2.63,2.88,2.93,3.09,3.13,3.38,3.47,3.55,3.63,3.84,
Truss 3.87,3.88,4.18,4.22,4.49,4.59,4.80,4.97,5.12,5.74,7.22,7.97,11.50,13.50,13.90,

Structure  14.20,15.50,16.00,16.90,18.80,19.90,22.00,22.90,26.50,30.00,33.50}

25-bar {0.1,0.2,0.3,0.4, 05, 06,0.7,08,0.9,1.0,1.1,1.2,1.3,14,15,16, 1.7, 1.8,
Truss 1.9,2.0,21,2.2,23,24,26,2.8,3.0,3.2, 3.4}
Structure

{71.613, 90.968, 126.451, 161.29 198.064, 252.258, 285.161, 363.225, 388.386,
494193, 506.451, 641.289, 645.16, 792.256, 816.773, 939.998, 1008.385,
52-bar 1045.159, 1161.288, 1283.868, 1374.191, 1535.481, 1690.319, 1696.771,
Truss 1858.061, 1890.319, 1993.544, 729.031, 2180.641, 2238.705, 2290.318,
Structure 2341931, 2477.414, 2496.769, 2503.221, 2696.769, 2722.575, 2896.768,
2961.284, 3096.768, 3206.445, 3303.219, 3703.218, 4658.055, 5141.925,
5503.215, 5999.988, 6999.986, 7419.34, 8709.66, 8967.724, 9161.272, 9999.98,
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10322.56, 10903.204, 12129.008, 12838.684, 14193.52, 14774.164, 15806.42,
17096.74, 18064.48, 19354.8, 21612.86}

{0.111, 0.141, 0.196, 0.25, 0.307, 0.391,0.442, 0.563, 0.602, 0.766, 0.785, 0.994,

72-bar 1,1.228, 1.266, 1.457, 1.563 1.62, 1.8 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93
Truss 3.09, 1.13 3.38, 3.47, 3.55 3.63, 3.84, 3.87, 3.88, 4.1 4.22 4.49, 4.59, 4.8, 4.97
Structure  5.12, 5.74, 7.22, 7.97 8.53 9.3 10.85, 11.5, 13.5, 13.9, 14.2, 155, 16 16.9 18.8

19.9 22, 22.9, 245, 26.5, 28,30, 33.5}

{1.84, 2.26, 2.66, 3.07, 3.47, 3.88, 4.79, 5.27, 5.75, 6.25, 6.84, 7.44, 8.06, 8.66,

9.40, 10.47, 11.38, 12.21, 13.79, 15.39, 17.03, 19.03, 21.12, 23.20, 25.12, 27.50,
160-bar 29.88, 32.76, 33.90, 34.77, 39.16, 43.00, 45.65, 46.94, 51.00, 52.10, 61.82, 61.90,
Truss 68.30, 76.38, 90.60, 94.13 cm2}, and r = {0.47, 0.57, 0.67, 0.77, 0.87, 0.97, 0.97,
Structure  1.06, 1.16, 1.26, 1.15, 1.26, 1.36, 1.46, 1.35, 1.36, 1.45, 1.55, 1.75, 1.95, 1.74,

1.94, 2.16, 2.36, 2.57, 2.35, 2.56, 2.14, 2.33, 2.97, 2.54, 2.93, 2.94, 2.94, 2.92,
3.54,3.96, 3.52,3.51, 3.93,3.92,3.92 }

=360 in !

)]

@

I(4)
P P

Figure 8. 10-bar truss structure

100 in

Figure 9. 25-bar truss structure
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Figure 11. 72-bar truss structure
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Figure 12. 160-bar truss structure

6. RESULTS OF NUMERICAL INVESTIGATIONS

In this section, the detailed results of the numerical investigations including the optimization
procedures are presented.

6.1. 10-bar truss problem

Regarding the first design example which is a 10-bar truss structure, the convergence
curves of the best optimization runs for the I-ARO and ARO algorithms are presented in
Fig. 13 in which the superiority of the I-ARO in reaching better results than ARO is
demonstrated.
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10-Bar Truss Convergence Curves
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Figure 13. Convergence history of ARO and I-ARO algorithms for 10-bar truss structure.

The best result of the multiple optimization runs by the ARO and I-ARO algorithms are
presented in Table 1 for the 10-bar truss problem in which the discrete design variables are
also provided for comparative purposes. The lowest possible weight for the structure is
calculated for the ARO and I-ARO algorithms while I-ARO can reach 5491.71 Ib.

The competitive and statistical results of the I-ARO and ARO algorithms are presented in
Table 2 by considering the conducted 50 independent runs alongside the results of other
approaches. It can be seen that the I-ARO algorithm is capable of reaching 5491.71 Ib for
the weight of the 10-bar truss structure while the MBA with 5504.75 Ib has the second rank.
The I-ARO algorithm is capable of providing better statistical results than other methods.

Table 2: Comparative results of ARO and I-ARO algorithms and other approaches in dealing
with 10-bar truss problem

Design

Variables ~ GA[35] Pso[36] Loor¢ HPSO MBA — ,po I-ARO
(in2?) [36] [36] [37]

A 335 30 30 30 30 335 335

A 1.62 1.62 18 162 162 3.63 1.62

As 22 30 265 229 229 30 22.9

A 155 135 155 135 169 14.2 155

As 1.62 1.62 162 162 162 1.62 1.62

As 1.62 1.8 162 162 162 1.62 1.62

A 14.2 115 115 797 7.97 7.97 7.97

As 19.9 18.8 188 265 229 22.9 22

As 199 22 22 22 22.9 18.8 22

Ao 2.62 1.8 309 18 1.62 2.13 1.62
Weight (Ib)  5613.84 5581.76  5503.44 553198 5507.75 5681.7455 5491.7174
Worst - - ~  5536.965 6539.7499 6250.6790
weight (Ib)

Mean - - — — 5527.296 5989.9573 5663.3019
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weight (Ib)

Standard
deviation — - - 3.8402 11.38 190.2765 169.7751

(Ib)

HPSO: Heuristic Particle Swarm Optimization
MBA: Mine Blast Algorithm

DE: Differential Evolution

AEDE: Adaptive Elitist Differential Evolution

The design constraints related to the best optimization run conducted by the I-ARO are
presented in Fig. 14 for both displacements and stresses of the structural nodes and
members. The results show that the I-ARO can handle the constraints in the allowable
ranges.

Displacement of 10-Bar Truss
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Figure 14. Displacement and stress design constraints for 10-bar truss problem

6.2. 25-bar Space Structure

For the 20-bar truss structure, the convergence history of the best optimization run
alongside the conducted 50 independent runs for both ARO and I-ARO are presented in Fig.
15. The I-ARO algorithm is capable of reaching better results than the standard ARO
algorithm.
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Figure 15. Convergence history of ARO and I-ARO algorithms for 25-bar truss structure.

Table 3 reports the statistical and detailed results of deferent methods for the 20-bar truss
problem alongside the results of the ARO and I-ARO algorithms. The I-ARO can provide a
best optimum value of 485.04 Ib while the ARO with 486.51 Ib has the second rank. The
statistical results for the other methods are not available but the 1-ARO with mean of 495.63
Ib, worst of 502.63 Ib and std. of 5.76 Ib outranked the standard ARO algorithm for this

case.

Table 3: Comparative results of ARO and I-ARO algorithms and other approaches in dealing
with 25-bar truss problem

Design

. SGA SA  PSO PSOP GA  GAOS ITA

ng;lbles 38] [39] [36] cC[6 [40] [a0 a1 ARO  I-ARO
Al 01 01 04 01 01 01 01 02 o1
A2 05 12 06 11 18 12 19 06 05
A3 34 34 35 31 23 32 26 34 34
Ad 01 01 01 01 02 01 01 01 01
A5 15 22 17 21 01 11 01 16 19
A6 09 11 10 10 08 09 08 1 1

A7 06 10 03 01 18 04 21 04 04
A8 34 30 34 35 30 34 26 34 34
E’I‘t’;‘ght 48629 537.23 48654 49016 546.01 493.80 562.93 386'51 385'048
Worst 512.09 502.633
weight - - - - - - - 4 7

(Ib)

Mean 49639 495.636
weight — — — — — — — 3 9

(Ib)
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Standard
deviation

(Ib)

- 7.6017 5.7694

SGA: Steady-State Genetic Algorithm

GA: Genetic Algorithm

PSO: Particle Swarm Optimization

PSOPC: Particle Swarm Optimization Passive Congregation
SA: Simulated Annealing

GAOS: Genetic Algorithm Based Optimum Structural Design
ITA: Improved Templeman Algorithm

The displacement and stress design constraints are reported in Fig. 16 regarding the best
optimization run conducted by the I-ARO algorithm in dealing with the 25-bar truss
structure for which it is capable of handling the constraints properly.

Displacement of 25-Bar Truss
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Fig. 16. Displacement and stress design constraints for 25-bar truss problem.
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6.3. 52-bar Planar Structure

For the third design example, the convergence history of the best optimization run among
50 conducted runs are illustrated in Fig. 17 for both ARO and I-ARO algorithms while the
capability of the I-ARO algorithm in providing better results than standard ARO algorithm
is demonstrated.

52-Bar Truss Convergence Curves
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Figure 17. Convergence history of ARO and I-ARO algorithms for 52-bar truss structure.

In Table 4, the design variables related to the best optimization runs conducted by
different methods including the ARO and I-ARO algorithms are presented alongside the
statistical results. The I-ARO algorithm is capable of reaching 1903.70 Ib for the weight of
the 52-bar truss structure while the other methods converge to higher values. Regarding
statistical results, the I-ARO can provide 2222.43 Ib, 2859.54 Ib and 269.17 Ib for the mean,
worst and std which are better than the results of the ARO algorithm.

Table 4: Comparative results of ARO and I-ARO algorithms and other approaches in dealing
with 52-bar truss problem

Ol: 10.22068/ijoce.2024.14.3.593 ]

o

[a—

Design sGA SSGA-  SSGA-  PSOPC  HPSO  PSO

Ei/s_rz';"b'es [38] 2P[38] 3P[38] [36] [36] [36] HS[42]  ARO I-ARG
Al 4658.055 4658.055 4658055 5999.988 4658.055 4658.055 4658.055 4658.055 4658.055
A2 1161288 1161.288 1283.868 1008.380 1161.288 1374.190 1161.288 1161.288 1161.288
A3 645.16 64516 285161 2696.770 363.225 1858.060 506.451 363.225  388.386
A4 3303.219 3303.219 3303.219 3206.440 3303219 3206.440 3303.219 3303.219  3303.219
A5 1045.159 1045159 1045150 1161.290 940.000 1283.870 940.000 939.998  939.998
A6 494193 494193 363225 729.030 494.193 252.260 494193 641.289  729.031
A7 2477.414 2477414 2496.769 2238710 2238.705 3303220 2290.318 2180.641 2238.705
A8 1045.159 1045159 1045.150 1008.380 1008.385 1045160 1008.385 1008.385 1008.385
A9 285161 285161 363225 494190 388.386 126450 2290.318 494.193  388.386
A10 1696.771 1696.771 1696.771 1283.870 1283.868 2341.93 1535481 1161.288 1283.868
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All 1045.159 1045.159 1045.159 1161.290 1161.288 1008.38 1045.159 1161.288 1161.288
A12 641.289 641.280 792.256 494190 792.256 1045.16 506.451 1161.288 494.193
\(’I\S'ght 1970.142 1970.110 1980.412 2146.63 190549 2230.16 1906.76 1917.7879 1903.7007
Worst

weight - - - - - 3453.3942 2859.5465
(Ib)

Mean

weight - - - - - 2305.4600 2222.4305
(Ib)

Standard

deviation — - - - - 384.5965  269.1790
(Ib)

HS: Harmony Search Algorithm
SGA: Steady-State Genetic Algorithm
— GA: Genetic Algorithm
O:.’ PSO: Particle Swarm Optimization
< PSOPC: Heuristic Particle Swarm Optimization Passive Congregation
HPSO: Heuristic Particle Swarm Optimization

Fig. 18 illustrates the stress design constraints for the optimal runs performed by the I-
ARO algorithm. The figure showcases the effectiveness of the constraint handling approach
employed by the I-ARO in this paper.
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Figure 18. Stress design constraints for 52-bar truss problem

6.4. 72-bar Truss Structure

Fig. 19 displays the convergence behaviour of the ARO and I-ARO algorithms as they
are utilized for addressing the 72-bar truss design problem that incorporates discrete
variables. In parallel, Table 5 offers a juxtaposition of the acquired outcomes. The graphical
representations in Fig. 19 distinctly indicate 1-ARQ's superiority over ARO, as evidenced by
its accomplishment of a 389.45 Ib weight, outperforming several extensively acknowledged
metaheuristic algorithms. Nonetheless, statistical results underscore that 1-ARO's
performance remains remarkably competitive within this specific scenario.

[ DOI: 10.22068/ijoce.2024.14.3.593 ]
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Convergence History for 72-Bar Truss
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Figure 19. Convergence curves of the ARO and I-ARO algorithms regarding 72-bar truss
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Table 5: Comparative results of different approaches in dealing with 72-bar truss problem

Design SGA  PSO PSOPC HPSO DHPSA MBA  CBO

Ei/g.rz';"b'es [38] [36] [36] [36] CO[36] [37] [44] ARO — I-ARO
Al 01960 7.2 4.49 49700 1.8000 01960 1.6200 1.8 18

A2 0.6020  1.80 1457 12280 0.4420 05630 05630 0563  0.442
A3 03070 113 0111 01110 01410 04420 01110 0111  0.111
Ad 07660 0196 0111 01110 01110 06020 01110 0111  0.111
A5 03910  3.09 2620 28800 1.2280 04420 14570 1457  1.266
AB 03910 0785 1130 14570 05630 04420 04420 0563  0.563
A7 01410 0563 0196 01410 01110 01110 01110 0111  0.111
A8 01110 0785 0111 01110 01110 01110 01110 0111  0.111
A9 1.8000  3.09 1266 15630 05630 1.2660 0.6020 0442  0.563
A10 06020 1228 1457  1.2280 05630 05630 05630 0442  0.563
All 01410 0111 0111 01110 01110 01110 01110 0111  0.111
A12 03070 0563 0111 01960 02500 0.1110 01110 0111  0.111
A13 15630 1990  0.442 03910 0.1960 1.8000 01960 0.196  0.196
Ald 07660 1.620  1.457 14570 05630 0.6020 0.6020 0563  0.563
A15 01410 1563 1228 07660 04420 01110 03910 0442  0.442
A16 01110 1266 1457 15630 05630 0.1110 05630 0563  0.602
z’l\g'ght 427203 1209.48 941.82  933.000 393.380 390.730 391.070 289'814 389'457
Worst 413.048 417.442
weight (1b) _ _ - - 399.490 495970 |, ;

Mean 396.851 396.598
weight (Ib) - - - - 395432 403710 3
Standard

deviation  — _ _ - - 3.0400 24.8000 53870  5.3506

(Ib)
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DHPSAC: Harmony Search Algorithm
CBO: Colliding bodies optimization
IMBA: Improved Mine Blast Algorithm

For the 72-bar truss design example, the displacement and stress design constraints for
the best optimization run conducted by the I-ARO are provided in Fig. 20 in which the
capability of the constraint handling approach in this paper is in perspective.
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Figure 20. Displacement (a) and stress (b) design constraints for 72-bar truss problem

6.5. 160-bar Truss Structure

The progression of convergence for the ARO and I-ARO methods in handling the 160-
bar truss design case is visualized in Fig. 21 which displays the superiority of the improved
method over the standard one regarding the best optimization runs of both algorithms.

Table 6 shows the optimal design solution for the 160-bar truss problem obtained through
50 independent optimization runs using the I-ARO algorithm. The table also includes
accompanying statistical outcomes and discrete design variables for the sake of comparison.
The minimum achievable weight for the structure is computed using I-ARO, and outcomes
from other established metaheuristic methods found in the literature are also included,
enhancing the understanding of I-ARO's potential. It can be concluded that I-ARO
effectively yields a weight of 1345.20 kg, representing the lowest feasible weight for this
structure based on the reported results.
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160-Bar Truss Convergence Curves
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Figure 21. Convergence history of I-ARO and ARO for 160-bar truss structure

Table 6: Comparative results of ARO, I-ARO and other approaches in dealing with 160-bar
truss problem
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Design

. SDR RGA RBAS AEDE

zi/s.rzl?bles [45] [46] [47] DE [48] [48] ARO I-ARO
Al 19.03 19.03 19.03 19.03 19.03 19.03 19.03
A2 5.27 5.27 5.27 5.27 5.27 5.27 5.27
A3 19.03 19.03 19.03 19.03 19.03 19.03 19.03
A4 5.27 5.27 5.27 5.27 5.27 5.27 5.27
A5 19.03 19.03 19.03 19.03 19.03 19.03 19.03
A6 5.75 5.75 5.75 5.75 5.75 5.75 5.75
A7 17.03 15.39 15.39 17.03 15.39 15.39 15.39
A8 6.25 5.75 5.75 5.75 5.75 5.75 5.75
A9 13.79 13.79 13.79 13.79 13.79 13.79 13.79
A10 6.25 5.75 5.75 5.75 5.75 5.75 5.75
All 5.75 5.75 5.75 6.84 5.75 5.75 5.75
Al2 12.21 13.79 12.21 12.21 12.21 13.79 12.21
Al3 6.84 6.25 6.25 7.44 6.25 6.25 6.25
Al4 5.75 5.75 5.75 5.75 5.75 5.75 5.75
Al5 2.66 2.66 3.47 6.84 3.88 2.66 2.66
Al6 7.44 7.44 7.44 8.66 7.44 7.44 7.44
Al17 1.84 1.84 1.84 2.26 1.84 1.84 2.26
A18 8.66 8.66 9.40 12.21 8.66 8.66 8.66
Al19 2.66 2.66 2.66 3.88 2.66 2.66 2.66
A20 3.07 3.07 3.47 3.88 3.07 3.07 3.07
A21 2.66 2.66 3.07 3.88 2.66 2.66 6.25
A22 8.06 8.06 8.06 8.66 8.06 8.06 8.06
A23 5.27 5.27 5.75 6.25 5.75 5.27 5.75
A24 7.44 6.25 6.25 7.44 6.25 7.44 6.25
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A25 6.25 5.75 5.75 9.4 5.75 5.75 5.75
A26 1.84 1.84 2.26 4.79 2.26 1.84 2.26
A27 4.79 4.79 4.79 6.25 4.79 4.79 4.79
A28 2.66 2.66 3.07 4.79 2.66 2.66 2.66
A29 3.47 3.47 3.47 4.79 3.47 3.88 3.47
A30 1.84 1.84 1.84 1.84 1.84 1.84 1.84
A3l 2.26 2.26 3.88 2.66 2.26 2.66 3.07
A32 3.88 3.88 3.88 3.88 3.88 3.88 3.88
A33 1.84 1.84 1.84 2.26 1.84 1.84 1.84
A34 1.84 1.84 2.26 2.66 1.84 1.84 1.84
A35 3.88 3.88 3.88 4.79 3.88 3.88 3.88
A36 1.84 1.84 2.66 2.26 1.84 1.84 1.84
A37 1.84 1.84 3.47 3.88 1.84 1.84 2.66
A38 3.88 3.88 3.88 4.79 3.88 3.88 3.88
z’l\(’g)'ght 1350.781 1337.442 1348905 1448.306 1336.634 1346.3763 1345.2063
Worst
weight - - 14016323 1743596 1410.611 1582.5558 1573.9283
(ka)
Mean
weight - - 1367.5275 1617.346 1355.875 1392.6752 1398.6182
(kg)
Standard
deviation — - - 81930  18.805  53.9090  68.1814
(kg)

RGA: Regional Genetic Algorithm
SDR: Selective Dynamic Rounding

RBAS: Rank-Based Ant Colony Algorithm

Fig. 22 showcases the stress-related design constraints for the most optimal optimization
run achieved through the 1-ARO algorithm. This presentation includes constraints for eight
distinct load scenarios, providing a clear view of the constraint handling approach's
effectiveness.
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Figure 22. Stress design constraints for 160-bar truss problem.
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For further studies, the presented method can be compared to those given in references
[49-53].

7. CONCLUSIONS

This paper investigates the optimal design of truss structures with enhanced metaheuristic
algorithms. For this purpose, the Improved Artificial Rabbits Optimization (I-ARO)
algorithm is proposed for the first time in this paper in which the well-known random
initialization process is substituted by the Diagonal Linear Uniform (DLU) initialization
procedure. The key findings of this paper are as follows:

e Regarding the 10-bar truss problem, the lowest possible weight for the structure is
calculated by the I-ARO algorithm as 5491.71 Ib while the MBA with 5504.75 Ib
has the second rank.

e |-ARO can provide a best optimum value of 485.04 Ib for the 25-bar truss structure
while the ARO with 486.51 Ib has the second rank.

e |-ARO algorithm is capable of reaching 1903.70 Ib for the weight of the 52-bar truss
structure which is better than the results of the ARO algorithm.

e For the 72-bar truss problem, I-ARO's superiority over ARO is obvious by providing
389.45 Ib for the weight of this structure.

e |-ARO effectively yields a weight of 1345.20 kg for the 160-bar truss structure,
representing the lowest feasible weight for this structure based on the reported
results.

For future attempts, the capability of this structure can be tested by optimizing different
types of engineering problems.
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